Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Sci Immunol ; 8(83): eadh3455, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2312885

ABSTRACT

Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.


Subject(s)
Antineoplastic Agents , COVID-19 , Myocarditis , Humans , Myocarditis/etiology , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19 Vaccines/adverse effects , Contrast Media , COVID-19/prevention & control , Gadolinium , Killer Cells, Natural , Cytokines
2.
Genome Biol Evol ; 15(4)2023 04 05.
Article in English | MEDLINE | ID: covidwho-2276330

ABSTRACT

Developing a timely and effective response to emerging SARS-CoV-2 variants of concern (VOCs) is of paramount public health importance. Global health surveillance does not rely on genomic data alone to identify concerning variants when they emerge. Instead, methods that utilize genomic data to estimate the epidemiological dynamics of emerging lineages have the potential to serve as an early warning system. However, these methods assume that genomic data are uniformly reported across circulating lineages. In this study, we analyze differences in reporting delays among SARS-CoV-2 VOCs as a plausible explanation for the timing of the global response to the former VOC Mu. Mu likely emerged in South America in mid-2020, where its circulation was largely confined. In this study, we demonstrate that Mu was designated as a VOC ∼1 year after it emerged and find that the reporting of genomic data for Mu differed significantly than that of other VOCs within countries, states, and individual laboratories. Our findings suggest that nonsystematic biases in the reporting of genomic data may have delayed the global response to Mu. Until they are resolved, the surveillance gaps that affected the global response to Mu could impede the rapid and accurate assessment of future emerging variants.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Bias , Genomics
3.
J Pediatric Infect Dis Soc ; 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2265295

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) screening testing is a recommended mitigation strategy for schools, although few descriptions of program implementation are available. METHODS: Kindergarten through 12th grade (K-12) students and staff practicing universal masking during the delta and omicron variant waves from 5 schools in Durham, North Carolina and 8 in Kansas City, Missouri participated; Durham's program was structured as a public health initiative facilitated by school staff, and Kansas City's as a research study facilitated by a research team. Tests included school-based rapid antigen or polymerase chain reaction testing, at-home rapid antigen testing, and off-site nucleic acid amplification testing. RESULTS: We performed nearly 5,700 screening tests on more than 1,600 K-12 school students and staff members. The total cost for the Durham testing program in 5 public charter K-12 schools, each with 500-1000 students, was $246,587 and approximately 752 hours per semester; cost per test was $70 and cost per positive result was $7,076. The total cost for the Kansas City program in 8 public K-12 schools was $292,591 and required approximately 537 hours in personnel time for school-based testing; cost per test was $132 and cost per positive result was $4,818. SARS-CoV-2 positivity rates were generally lower (0-16.16%) than rates in the community (2.7-36.47%) throughout all testing weeks. CONCLUSIONS AND RELEVANCE: Voluntary screening testing programs in K-12 schools are costly and rarely detect asymptomatic positive persons, particularly in universally masked settings.

4.
Nat Commun ; 14(1): 1299, 2023 03 09.
Article in English | MEDLINE | ID: covidwho-2264553

ABSTRACT

mRNA-based vaccines dramatically reduce the occurrence and severity of COVID-19, but are associated with rare vaccine-related adverse effects. These toxicities, coupled with observations that SARS-CoV-2 infection is associated with autoantibody development, raise questions whether COVID-19 vaccines may also promote the development of autoantibodies, particularly in autoimmune patients. Here we used Rapid Extracellular Antigen Profiling to characterize self- and viral-directed humoral responses after SARS-CoV-2 mRNA vaccination in 145 healthy individuals, 38 patients with autoimmune diseases, and 8 patients with mRNA vaccine-associated myocarditis. We confirm that most individuals generated robust virus-specific antibody responses post vaccination, but that the quality of this response is impaired in autoimmune patients on certain modes of immunosuppression. Autoantibody dynamics are remarkably stable in all vaccinated patients compared to COVID-19 patients that exhibit an increased prevalence of new autoantibody reactivities. Patients with vaccine-associated myocarditis do not have increased autoantibody reactivities relative to controls. In summary, our findings indicate that mRNA vaccines decouple SARS-CoV-2 immunity from autoantibody responses observed during acute COVID-19.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Vaccines, Synthetic , mRNA Vaccines , Humans , Antibodies, Viral/immunology , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmunity/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Drug-Related Side Effects and Adverse Reactions/immunology , Immunity, Humoral/immunology , Myocarditis/immunology , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
5.
Sci Rep ; 12(1): 22175, 2022 12 22.
Article in English | MEDLINE | ID: covidwho-2186046

ABSTRACT

Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.


Subject(s)
COVID-19 , Malaria , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antibodies, Viral , Cross Reactions , N-Acetylneuraminic Acid , Epitopes
6.
Pediatrics ; 151(2)2023 02 01.
Article in English | MEDLINE | ID: covidwho-2197398

ABSTRACT

BACKGROUND AND OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is prevalent in most NICUs, with a high rate of skin colonization and subsequent invasive infections among hospitalized neonates. The effectiveness of interventions designed to reduce MRSA infection in the NICU during the coronavirus disease 2019 (COVID-19) pandemic has not been characterized. METHODS: Using the Institute for Healthcare Improvement's Model for Improvement, we implemented several process-based infection prevention strategies to reduce invasive MRSA infections at our level IV NICU over 24 months. The outcome measure of invasive MRSA infections was tracked monthly utilizing control charts. Process measures focused on environmental disinfection and hospital personnel hygiene were also tracked monthly. The COVID-19 pandemic was an unexpected variable during the implementation of our project. The pandemic led to restricted visitation and heightened staff awareness of the importance of hand hygiene and proper use of personal protective equipment, as well as supply chain shortages, which may have influenced our outcome measure. RESULTS: Invasive MRSA infections were reduced from 0.131 to 0 per 1000 patient days during the initiative. This positive shift was sustained for 30 months, along with a delayed decrease in MRSA colonization rates. Several policy and practice changes regarding personnel hygiene and environmental cleaning likely contributed to this reduction. CONCLUSIONS: Implementation of a multidisciplinary quality improvement initiative aimed at infection prevention strategies led to a significant decrease in invasive MRSA infections in the setting of the COVID-19 pandemic.


Subject(s)
COVID-19 , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Infant, Newborn , Humans , Cross Infection/prevention & control , Cross Infection/epidemiology , Intensive Care Units, Neonatal , Staphylococcal Infections/epidemiology , Staphylococcal Infections/prevention & control , Pandemics/prevention & control , Infection Control , COVID-19/prevention & control
7.
Pediatrics ; 150(5)2022 11 01.
Article in English | MEDLINE | ID: covidwho-1993570

ABSTRACT

OBJECTIVES: We evaluated the impact of a test-to-stay (TTS) program on within-school transmission and missed school days in optionally masked kindergarten through 12th grade schools during a period of high community severe acute respiratory syndrome coronavirus 2 transmission. METHODS: Close contacts of those with confirmed severe acute respiratory syndrome coronavirus 2 infection were eligible for enrollment in the TTS program if exposure to a nonhousehold contact occurred between November 11, 2021 and January 28, 2022. Consented participants avoided school exclusion if they remained asymptomatic and rapid antigen testing at prespecified intervals remained negative. Primary outcomes included within-school tertiary attack rate (test positivity among close contacts of positive TTS participants) and school days saved among TTS participants. We estimated the number of additional school-acquired cases resulting from TTS and eliminating school exclusion. RESULTS: A total of 1675 participants tested positive or received at least 1 negative test between days 5 and 7 and completed follow-up; 92% were students and 91% were exposed to an unmasked primary case. We identified 201 positive cases. We observed a tertiary attack rate of 10% (95% confidence interval: 6%-19%), and 7272 (89%) of potentially missed days were saved through TTS implementation. We estimated 1 additional school-acquired case for every 21 TTS participants remaining in school buildings during the entire study period. CONCLUSIONS: Even in the setting of high community transmission, a TTS strategy resulted in substantial reduction in missed school days in optionally masked schools.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Schools , Incidence
8.
PLoS Biol ; 20(5): e3001506, 2022 05.
Article in English | MEDLINE | ID: covidwho-1862232

ABSTRACT

The impact of Coronavirus Disease 2019 (COVID-19) mRNA vaccination on pregnancy and fertility has become a major topic of public interest. We investigated 2 of the most widely propagated claims to determine (1) whether COVID-19 mRNA vaccination of mice during early pregnancy is associated with an increased incidence of birth defects or growth abnormalities; and (2) whether COVID-19 mRNA-vaccinated human volunteers exhibit elevated levels of antibodies to the human placental protein syncytin-1. Using a mouse model, we found that intramuscular COVID-19 mRNA vaccination during early pregnancy at gestational age E7.5 did not lead to differences in fetal size by crown-rump length or weight at term, nor did we observe any gross birth defects. In contrast, injection of the TLR3 agonist and double-stranded RNA mimic polyinosinic-polycytidylic acid, or poly(I:C), impacted growth in utero leading to reduced fetal size. No overt maternal illness following either vaccination or poly(I:C) exposure was observed. We also found that term fetuses from these murine pregnancies vaccinated prior to the formation of the definitive placenta exhibit high circulating levels of anti-spike and anti-receptor-binding domain (anti-RBD) antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) consistent with maternal antibody status, indicating transplacental transfer in the later stages of pregnancy after early immunization. Finally, we did not detect increased levels of circulating anti-syncytin-1 antibodies in a cohort of COVID-19 vaccinated adults compared to unvaccinated adults by ELISA. Our findings contradict popular claims associating COVID-19 mRNA vaccination with infertility and adverse neonatal outcomes.


Subject(s)
COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , Female , Fetus , Gene Products, env , Humans , Mice , Placenta/metabolism , Pregnancy , Pregnancy Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2 , Vaccination
9.
Pediatrics ; 149(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1793439

ABSTRACT

OBJECTIVES: We evaluated the safety and efficacy of a test-to-stay program for unvaccinated students and staff who experienced an unmasked, in-school exposure to someone with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Serial testing instead of quarantine was offered to asymptomatic contacts. We measured secondary and tertiary transmission rates within participating schools and in-school days preserved for participants. METHODS: Participating staff or students from universally masked districts in North Carolina underwent rapid antigen testing at set intervals up to 7 days after known exposure. Collected data included location or setting of exposure, participant symptoms, and school absences up to 14 days after enrollment. Outcomes included tertiary transmission, secondary transmission, and school days saved among test-to-stay participants. A prespecified interim safety analysis occurred after 1 month of enrollment. RESULTS: We enrolled 367 participants and completed 14-day follow-up on all participants for this analysis. Nearly all (215 of 238, 90%) exposure encounters involved an unmasked index case and an unmasked close contact, with most (353 of 366, 96%) occurring indoors, during lunch (137 of 357, 39%) or athletics (45 of 357, 13%). Secondary attack rate was 1.7% (95% confidence interval: 0.6%-4.7%) based on 883 SARS-CoV-2 serial rapid antigen tests with results from 357 participants; no tertiary cases were identified, and 1628 (92%) school days were saved through test-to-stay program implementation out of 1764 days potentially missed. CONCLUSION: After unmasked in-school exposure to SARS-CoV-2, even in a mostly unvaccinated population, a test-to-stay strategy is a safe alternative to quarantine.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Testing , Humans , Quarantine , Schools
10.
Kidney360 ; 2(6): 924-936, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1776841

ABSTRACT

Background: SARS-CoV-2 infection has, as of April 2021, affected >133 million people worldwide, causing >2.5 million deaths. Because the large majority of individuals infected with SARS-CoV-2 are asymptomatic, major concerns have been raised about possible long-term consequences of the infection. Methods: Wedeveloped an antigen capture assay to detect SARS-CoV-2 spike protein in urine samples from patients with COVID-19whose diagnosis was confirmed by positive PCR results from nasopharyngeal swabs (NP-PCR+) forSARS-CoV-2. We used a collection of 233 urine samples from 132 participants from Yale New Haven Hospital and the Children's Hospital of Philadelphia that were obtained during the pandemic (106 NP-PCR+ and 26 NP-PCR-), and a collection of 20 urine samples from 20 individuals collected before the pandemic. Results: Our analysis identified 23 out of 91 (25%) NP-PCR+ adult participants with SARS-CoV-2 spike S1 protein in urine (Ur-S+). Interestingly, although all NP-PCR+ children were Ur-S-, one child who was NP-PCR- was found to be positive for spike protein in their urine. Of the 23 adults who were Ur-S+, only one individual showed detectable viral RNA in urine. Our analysis further showed that 24% and 21% of adults who were NP-PCR+ had high levels of albumin and cystatin C, respectively, in their urine. Among individuals with albuminuria (>0.3 mg/mg of creatinine), statistical correlation could be found between albumin and spike protein in urine. Conclusions: Together, our data showed that one of four individuals infected with SARS-CoV-2 develop renal abnormalities, such as albuminuria. Awareness about the long-term effect of these findings is warranted.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Adult , COVID-19/diagnosis , Child , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
Nat Med ; 28(3): 481-485, 2022 03.
Article in English | MEDLINE | ID: covidwho-1636460

ABSTRACT

The recent emergence of the SARS-CoV-2 Omicron variant is raising concerns because of its increased transmissibility and its numerous spike mutations, which have the potential to evade neutralizing antibodies elicited by COVID-19 vaccines. Here we evaluated the effects of a heterologous BNT162b2 mRNA vaccine booster on the humoral immunity of participants who had received a two-dose regimen of CoronaVac, an inactivated vaccine used globally. We found that a heterologous CoronaVac prime vaccination of two doses followed by a BNT162b2 booster induces elevated virus-specific antibody levels and potent neutralization activity against the ancestral virus and the Delta variant, resembling the titers obtained after two doses of mRNA vaccines. Although neutralization of Omicron was undetectable in participants who had received a two-dose regimen of CoronaVac, the BNT162b2 booster resulted in a 1.4-fold increase in neutralization activity against Omicron compared with the two-dose mRNA vaccine. Despite this increase, neutralizing antibody titers were reduced by 7.1-fold and 3.6-fold for Omicron compared with the ancestral strain and the Delta variant, respectively. These findings have immediate implications for multiple countries that previously used a CoronaVac regimen and reinforce the idea that the Omicron variant is associated with immune escape from vaccines or infection-induced immunity, highlighting the global need for vaccine boosters to combat the impact of emerging variants.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
12.
Open forum infectious diseases ; 8(Suppl 1):S257-S257, 2021.
Article in English | EuropePMC | ID: covidwho-1564986

ABSTRACT

Background Streptococcus pneumoniae (pneumococcus) is a common colonizer of the upper respiratory tract and can progress to cause invasive and mucosal disease. Additionally, infection with pneumococcus can complicate respiratory viral infections (influenza, respiratory syncytial virus, etc.) by exacerbating the initial disease. Limited data exist describing the potential relationship of SARS-CoV-2 infection with pneumococcus and the role of co-infection in influencing COVID-19 severity. Methods Inpatients and healthcare workers testing positive for SARS-CoV-2 during March-August 2020 were tested for pneumococcus through culture-enrichment of saliva followed by RT-qPCR (to identify carriage) and for inpatients only, serotype-specific urine antigen detection (UAD) assays (to identify pneumococcal pneumonia). A multinomial multivariate regression model was used to examine the relationship between pneumococcal detection and COVID-19 severity. Results Among the 126 subjects who tested positive for SARS-CoV-2, the median age was 62 years;54.9% of subjects were male;88.89% were inpatients;23.5% had an ICU stay;and 13.5% died. Pneumococcus was detected in 17 subjects (13.5%) by any method, including 5 subjects (4.0%) by RT-qPCR and 12 subjects (13.6%) by UAD. Little to no bacterial growth was observed on 21/235 culture plates. Detection by UAD was associated with both moderate and severe COVID-19 disease while RT-qPCR detection in saliva was not associated with severity. None of the 12 individuals who were UAD-positive died. Conclusion Pneumococcal pneumonia (as determined by UAD) continues to occur during the ongoing pandemic and may be associated with more serious COVID-19 outcomes. Detection of pneumococcal carriage may be masked by high levels of antibiotic use. Future studies should better characterize the relationship between pneumococcus and SARS-CoV-2 across all disease severity levels. Disclosures Akiko Iwasaki, PhD, 4Bio (Consultant, Advisor or Review Panel member)Adaptive Biotechnologies (Consultant, Advisor or Review Panel member)Blavatnik (Grant/Research Support)HHMI (Grant/Research Support)Mathers (Grant/Research Support)NIH (Grant/Research Support)Spring Discovery (Grant/Research Support)Spring Discovery (Consultant, Advisor or Review Panel member)Vedanta InProTher (Consultant, Advisor or Review Panel member)Yale School of Medicine (Grant/Research Support) Nathan D. Grubaugh, PhD, Tempus Labs (Consultant) Ronika Alexander-Parrish, RN, MAEd, Pfizer (Employee, Shareholder) Adriano Arguedas, MD, Pfizer (Employee) Bradford D. Gessner, MD, MPH, Pfizer Inc. (Employee) Daniel Weinberger, PhD, Affinivax (Consultant)Merck (Consultant, Grant/Research Support)Pfizer (Consultant, Grant/Research Support) Anne Wyllie, PhD, Global Diagnostic Systems (Consultant)Pfizer (Advisor or Review Panel member, Research Grant or Support)PPS Health (Consultant)Tempus Labs, Inc (Research Grant or Support)

13.
Commun Biol ; 4(1): 1317, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528032

ABSTRACT

As Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread, characterization of its antibody epitopes, emerging strains, related coronaviruses, and even the human proteome in naturally infected patients can guide the development of effective vaccines and therapies. Since traditional epitope identification tools are dependent upon pre-defined peptide sequences, they are not readily adaptable to diverse viral proteomes. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify proteome-independent epitope binding specificities which are then analyzed in the context of organisms of interest. When evaluating immune response in the context of SARS-CoV-2, we identify dominant epitope regions and motifs which demonstrate potential to classify mild from severe disease and relate to neutralization activity. We highlight SARS-CoV-2 epitopes that are cross-reactive with other coronaviruses and demonstrate decreased epitope signal for mutant SARS-CoV-2 strains. Collectively, the evolution of SARS-CoV-2 mutants towards reduced antibody response highlight the importance of data-driven development of the vaccines and therapies to treat COVID-19.


Subject(s)
Epitope Mapping , SARS-CoV-2 , Antibodies, Viral , COVID-19 , Cross Reactions , Humans
14.
Nature ; 600(7889): 523-529, 2021 12.
Article in English | MEDLINE | ID: covidwho-1462014

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in major neutralizing antibody-binding sites can affect humoral immunity induced by infection or vaccination1-6. Here we analysed the development of anti-SARS-CoV-2 antibody and T cell responses in individuals who were previously infected (recovered) or uninfected (naive) and received mRNA vaccines to SARS-CoV-2. While individuals who were previously infected sustained higher antibody titres than individuals who were uninfected post-vaccination, the latter reached comparable levels of neutralization responses to the ancestral strain after the second vaccine dose. T cell activation markers measured upon spike or nucleocapsid peptide in vitro stimulation showed a progressive increase after vaccination. Comprehensive analysis of plasma neutralization using 16 authentic isolates of distinct locally circulating SARS-CoV-2 variants revealed a range of reduction in the neutralization capacity associated with specific mutations in the spike gene: lineages with E484K and N501Y/T (for example, B.1.351 and P.1) had the greatest reduction, followed by lineages with L452R (for example, B.1.617.2). While both groups retained neutralization capacity against all variants, plasma from individuals who were previously infected and vaccinated displayed overall better neutralization capacity than plasma from individuals who were uninfected and also received two vaccine doses, pointing to vaccine boosters as a relevant future strategy to alleviate the effect of emerging variants on antibody neutralizing activity.


Subject(s)
Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , BNT162 Vaccine/immunology , Female , Health Personnel/statistics & numerical data , Humans , Immunity, Humoral , Male , Middle Aged , Mutation , Retrospective Studies , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
16.
Med (N Y) ; 2(3): 263-280.e6, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1284368

ABSTRACT

BACKGROUND: Scaling SARS-CoV-2 testing to meet demands of safe reopenings continues to be plagued by assay costs and supply chain shortages. In response, we developed SalivaDirect, which received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration (FDA). METHODS: We simplified our saliva-based diagnostic test by (1) not requiring collection tubes with preservatives, (2) replacing nucleic acid extraction with a simple enzymatic and heating step, and (3) testing specimens with a dualplex qRT-PCR assay. Moreover, we validated SalivaDirect with reagents and instruments from multiple vendors to minimize supply chain issues. FINDINGS: From our hospital cohort, we show a high positive agreement (94%) between saliva tested with SalivaDirect and nasopharyngeal swabs tested with a commercial qRT-PCR kit. In partnership with the National Basketball Association (NBA) and National Basketball Players Association (NBPA), we tested 3,779 saliva specimens from healthy individuals and detected low rates of invalid (0.3%) and false-positive (<0.05%) results. CONCLUSIONS: We demonstrate that saliva is a valid alternative to swabs for SARS-CoV-2 screening and that SalivaDirect can make large-scale testing more accessible and affordable. Uniquely, we can designate other laboratories to use our sensitive, flexible, and simplified platform under our EUA (https://publichealth.yale.edu/salivadirect/). FUNDING: This study was funded by the NBA and NBPA (N.D.G.), the Huffman Family Donor Advised Fund (N.D.G.), a Fast Grant from Emergent Ventures at the Mercatus Center at George Mason University (N.D.G.), the Yale Institute for Global Health (N.D.G.), and the Beatrice Kleinberg Neuwirth Fund (A.I.K.). C.B.F.V. is supported by NWO Rubicon 019.181EN.004.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Laboratories , SARS-CoV-2/genetics , Saliva
17.
Nature ; 595(7866): 283-288, 2021 07.
Article in English | MEDLINE | ID: covidwho-1233713

ABSTRACT

COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-6. Although pathological innate immune activation is well-documented in severe disease1, the effect of autoantibodies on disease progression is less well-defined. Here we use a high-throughput autoantibody discovery technique known as rapid extracellular antigen profiling7 to screen a cohort of 194 individuals infected with SARS-CoV-2, comprising 172 patients with COVID-19 and 22 healthcare workers with mild disease or asymptomatic infection, for autoantibodies against 2,770 extracellular and secreted proteins (members of the exoproteome). We found that patients with COVID-19 exhibit marked increases in autoantibody reactivities as compared to uninfected individuals, and show a high prevalence of autoantibodies against immunomodulatory proteins (including cytokines, chemokines, complement components and cell-surface proteins). We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signalling and by altering peripheral immune cell composition, and found that mouse surrogates of these autoantibodies increase disease severity in a mouse model of SARS-CoV-2 infection. Our analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics. Our findings suggest a pathological role for exoproteome-directed autoantibodies in COVID-19, with diverse effects on immune functionality and associations with clinical outcomes.


Subject(s)
Autoantibodies/analysis , Autoantibodies/immunology , COVID-19/immunology , COVID-19/metabolism , Proteome/immunology , Proteome/metabolism , Animals , Antigens, Surface/immunology , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Complement System Proteins/immunology , Cytokines/immunology , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Organ Specificity/immunology
18.
Nat Med ; 27(7): 1178-1186, 2021 07.
Article in English | MEDLINE | ID: covidwho-1217708

ABSTRACT

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Carrier State/immunology , Female , Humans , Immunity, Humoral , Kinetics , Length of Stay/statistics & numerical data , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
19.
Emerg Infect Dis ; 27(4): 1146-1150, 2021 04.
Article in English | MEDLINE | ID: covidwho-1147295

ABSTRACT

The expense of saliva collection devices designed to stabilize severe acute respiratory syndrome coronavirus 2 RNA is prohibitive to mass testing. However, virus RNA in nonsupplemented saliva is stable for extended periods and at elevated temperatures. Simple plastic tubes for saliva collection will make large-scale testing and continued surveillance easier.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , RNA, Viral , SARS-CoV-2 , Saliva/virology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Capacity Building/methods , Humans , RNA Stability , RNA, Viral/isolation & purification , RNA, Viral/physiology , Reproducibility of Results , Resource Allocation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/economics , Specimen Handling/instrumentation , Specimen Handling/methods
20.
Emerg Infect Dis ; 27(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1146720

ABSTRACT

We analyzed feasibility of pooling saliva samples for severe acute respiratory syndrome coronavirus 2 testing and found that sensitivity decreased according to pool size: 5 samples/pool, 7.4% reduction; 10 samples/pool, 11.1%; and 20 samples/pool, 14.8%. When virus prevalence is >2.6%, pools of 5 require fewer tests; when <0.6%, pools of 20 support screening strategies.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , COVID-19/diagnosis , COVID-19/epidemiology , Capacity Building/methods , Health Care Rationing , Humans , Limit of Detection , Resource Allocation/methods , Sensitivity and Specificity , United States
SELECTION OF CITATIONS
SEARCH DETAIL